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SEGMENTS, RECTANGLES, CONTOURS

Witold Lipski, Jr. and Franco P. Preparata

Abstract

Two sets H and V of horizontal and vertical segments, respectively,

determine a subdivision M of the plane into regions. A nontrivial

region is one whose boundary contains an end-portion of nonzero length of at

least one segment, and the nontrivial contour of M is the collection of the

boundaries of nontrivial regions. In this paper we consider several

problems pertaining to H and V, such as the construction of the non-

trivial contour of M, of the external contour of M, and of a path

between two points in the plane avoiding the segments (route-in-a-maze).
We show that, if ]H! + Iv= n, all of these problems are solved in

time O(nlogn), by making use of a static data structure, called the

adjacency map, which can be searched in time O(logn) and can be con-

structed in time O(nlogn). The algorithms for the nontrivial and

external contour are shown to be optimal.

Keywords and phrases: Computational geometry, segments, contours,

rectangles, point-location, searching, segment-trees.
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1. Introduction

Several applications arising in diverse fields such as computer aided

design, operations research, large-scale-integration, data base concurrency

control, puzzles, etc., [1-4] call for the solutions of problems whose

basic ingredients are two mutually orthogonal collections of parallel

straight line segments in the plane. Although in many practical cases -

typically, we may think of VLSI applications - these segments are con-

strained to form the boundaries of rectangles, there is some gain in

generality, and applicability to a wider class of problems, if we consider

the segments as unconstrained, except chat no two parallel segments are

allowed to overlap. In general, we shall view the two families H and V of

segments as being respectively parallel to the x- and the y-axis of the

plane (horizontal and vertical, respectively).

In this paper we shall consider a number of diverse geometric problems

and we shall show how they can all be efficiently solved by the same tech-

nique. The comnon setting of all these problems are the two finite sets

2
H and V of horizontal and vertical segments; denoting by E the Euclidean

plane, the point set M=E 2 -HUV (relative complement of HUV) is a sub-

division of the plane consisting of a finite number of connected regions,

of which one is unbounded and is called external. We now describe the

problems to be considered.

(1) NONTRIVIAL-CONTOUR. In the planar subdivision M we call non-

trivial any region whose boundary contains an end-portion of nonzero length

of at least one segment (that is, a segment endpoint and a nontrivial portion

of that segment); all other regions are called trivial. (Notice that each

trivial region is a rectangle, although the converse is not true.) The

NONTRIVIAL-CONTOUR problem consists in producing the boundaries of all

nontrivial rqgions in M. A problem reducible to NONTRIVIAL-CONTOUR is

i
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(2) EXTERNAL-CONTOUR. Here the objective is the determination of the

boundary of the external region (external contour). Notice that, in

general, the external contour is a subset of the nontrivial contour.

(3) POINT-LOCATION (in a segment-induced planar subdivision).

Given M and a target point p, find the region of M which contains p. Of

course, this problem is interesting if such searches have to be made in

a repetitive mode, so that it pays to preprocess M in order to ease the

search. A problem related to "point location" is

(4) ROUTE-IN-A-MAZE. Consider the maze created by the two collections

of segments. A route between two selected points s and t in the plane is

a curve connecting the two points without crossing any segment. Obviously

a route is entirely contained in a region of M, so the existence of a

route can be decided by POINT-LOCATION, since s and t must belong to the

same region of M. The objective of ROUTE-IN-A-MAZE, however, is the

actual construction of such route if it is possible.

The paper is organized as follows. In Section 2 we shall describe

a basic data structure, called "adjacency map", and its search algorithm,

which is efficiently applicable to the solutions of the above problems,

and presumably of many others arising in similar contexts. In Section

3 we shall describe in detail the solutions of the selected problems,

while in Section 4 we shall develop some efficiency considerations

regarding the proposed methods.

2. The adjacency maps

As we mentioned earlier, our approach to the previously illustrated

problems rests on the construction of two data structures, called the

horizontal and vertical adjacency maps, and is an adaptation of a

recently developed planar point-location technique (5). We shall
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confine our presentation to the horizontal adjacency map (HAM); the

discussion is applicable with trivial changes to the vertical adjacency

map (YAM).

Consider the set V of the vertical segments (figure la). Through

each endpoint p of each member of V we trace a horizontal half-line

to the right and one to the left; each of these half-lines either

terminates on the vertical segment closest to p or, if no such intercept

exists, the half-line continues to infinity. In this manner the plane

is partitioned into regions, of which two are half-planes and all the others

are rectangles, possibly unbounded in one or both horizontal directions

(figure lb). Each rectangle is an equivalence class of points of the plane

with respect to their horizontal adjacency to vertical segments (whence the

name "horizontal adjacency map"). A simple induction argument shows that

(a) (b)

Figure 1. The set V of vertical segments (a) and the resulting
horizontal adjacency map (b).

I

!
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the total number of regions in the HAM is at most 31Vj + i.

The horizontal adjacency map is just a special case of a subdivision of

the plane induced by an embedded planar graph; therefore the point-location

problem in the HAM can be handled by one of the general techniques recently

proposed to solve this problem [5 - 7]. Particularly suited to this

instance is the techniques proposed in [5 1; however, due to the

specialization that the edges of the graph correspond either to vertical

or to horizontal segments, there are some natural simplifications. For

the benefit of the reader, we shall now describe the adaptation of the

general technique to our instance.

The HAM will be represented by a search data structure C, a binary

tree; the construction is based on the normalization of coordinates and

the partition of segments as induced by segment trees [8 1. Normaliza-

tion means that the members of each of the two sets of coordinates -

abscissae and ordinates - are replaced by their rank in the set (ties

are possible, i.e., there are m t 21V I distinct ordinates). Partition

of segments is the subdivision of an interval [el, e2] (eI and e2 are

integers) into a collection of standard intervals, which are defined

by a segment tree. We recall that, for an integer interval [a, b]

(a < b), a segment tree T(a, b) consists of a root v with INTERVAL[v] =

[a,bl, and if b - a > 1, of a left subtree T(a,L(a+b)/2j) and a right

subtree T(L(a+b)/2J,b); if b - a = 1, then the left and right subtrees

are empty. In figure 2 we illustrate the tree T(1,11), where each node v

is labeled with INTERVAL[v]. It is well-known [5,8] that an interval

[el,e2] (with 1 S eI < e2 S m) can be subdivided in a standard way into

O(logm) segments, each of which equals INTERVAL(v] for some node v of

T(l,m). The partition induced by T(1,11) (figure 2) on the members of V

.. .i . .. .i l~ I I .. . . ... I il i
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Figure 2. Illustration of T(l, 11).

of our current example (figure 1) is shown in figure 3.

411

10

5
4

I
2

12 3 4 5 6

Figure 3. The partition of the members of V induced
by T(1, 11).

1.



7

In the tree X we shall use two types of nodes, with different

pictorial representations: "W', a 7-node or "horizontal node", has

as discriminant an ordinate; "0", an O-node or "vertical node," has as

discriminant an abscissa. A slab [b,t] is the plane strip b :5 y < t.

For any segment e E V, L[e] and U[e] are respectively the lower

and upper endpoints of e.

The tree C is constructed by a recursive procedure. Each recur-

iive call processes one slab, that is, it accepts a slab and a left-

to-right sequence S of segments which have a nonempty intersectior,

with the slab. The search tree X is built by TREE(S*, l,m),where S*

is the left-to-right ordering of the members of V (structured as a

queue) and TREE(S, b,t) is the recursive procedure (1 ) given below.

Notice that the procedure implicitly performs the segment partition as

induced by the segment tree.

procedure TREE(S, b,t)

begin if S 0 then TREE - A

else begin S1 - S2 4- U 4- (* queues Sl, S2' and U are local to

this procedure*)

repeat e S (*eA if S = 0*)

if (e # A) and b < Lje]) or (Ute] < t)) then

(*in this case [L[e],U[e]] :_ (b,t]*)

begin if L[e] < L(b + t)/2J then S = e

if L(b + t )/2J < U[e] then S 2  e

end

If S is queue "S4" and "*S" denote the "add to" and "remove from"

operations, respectively.

[.~-------- - --- . - - - . - . - -
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l 7 -r°

else (*in this e = A or [L[e],Ufej] R [b,t]*)

begin new (w) (* create a new 7-node w

Y[w] 4- L(B +t)/2

LTREE[w] - TREE(S I , b, Y[w])

RTREE[w 4- TREE(S 2 , Y[w], t)

U= w

if (e # A) then U = X[e]

end

until e = A

BALANCE (U)

(* procedure BALANCE takes the alternating sequence U

of trees and abscissae and arranges these items

into a balanced tree *)

return

end

end

It has been shown in [ 5 ] that BALANCE can be designed so that the

total depth of X is O(logIV I ); moreover, the analysis plesented in [5

shows that both the running time and the storage requirement of TREE are

0(IVI logj VI ). The tree X pertaining to our running example (figures I and 3) is

shown in figure 4 (0-nodes and 7-nodes are labeled with abscissae and

ordinates, respectively). To each node, with less than two offsprings,

we append one or two "leaves" so that each shown node has exactly two

offsprings; a leaf is simply to be viewed as the termination of a path

from the root.

-i
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6 6, r 1 6 7 5 .. .

Figure 4. The search tree X corresponding to
the examples of figures 1 and 3.

The horizontal adjacency problem for a given point p0 
= (x0, y0 ) in

the plane slab [l,m] is solved by locating p0 in the planar subdivision

described by X. This corresponds to tracing a path in X from the root

to a leaf and recording on this path either (i) the smallest abscissa

larger than x0 for the segment adjacent to the right or (ii) the largest

abscissa smaller than x0 for the segment adjacent to the left; obviously,

if on the path the set of abscissae larger than x0 is empty, then there

is no segment adjacent to the right, and analogously for the other case.

..K.1. I
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3. Applications

3.1 NONTRIVLAL-CONTOUR. Let IHI + lvi n. The number t of edges

forming the boundaries of all regions of M may be, in general, Q(n 
2)

however we shall see that the number of edges in the boundaries of all

nontrivial regions (see Section 1) is only J(n).

Each segment in H is partitioned into edges by the members of V

which intersect it; similarly a segment in V with respect to H (the

endpoints of an edge are naturally called vertices). We regard each

edge as being lined by two arcs with opposite direction and lying on

either side of the edge, as illustrated in figure 5. The boundary of

any region in M consists of (directed) circuit(s) of arcs; a circuit is

called external or internal depending upon whether it is clockwise or

Figure~~~ ~ ~ ~ ~ 5.Cnetoso h ietoso h in gars

counterclockwise. ~ ~ ~ ~ A arissi tob temnedificotnsa

igur 5.a Ch onvenvions contu ofM-dinda the dirlection of the lnn rs

boundaries of all nontrivial regions - contains all the nontrivial

circuits, but it may contain in addition "trivial" rectangles containing

in their interior one or more nontrivial circuits; in any case the

number of the latter is less than the number of nontrivial circuits.



A very interesting fact, given as an appendix to this paper, is

embodied by the following proposition:

Proposition: The total number of arcs in the nontrivial circuits of

M is 0(n).

We shall now describe the method to obtain the nontrivial contour.

its central constituent is a procedure for constructing arc-by-arc each

nontrivial circuit. The advancing step runs as follows. Starting from

the current vertex v 1 (see figure 6) we march along the current segment

A in the assigned direction, and one of the following three cases occurs:

12

V v

2

(1) (2.1) 22(2.2)

Figure 6. Illustration of the advancing step of the
circuit construction procedure.

1. There is a segment A2) closest to vi, which intersects 2 1 and

crosses the region to the left of 21. In this case we make a

left-turn, i.e. the intersection v2 becomes the current vertex

and A becomes the current segment;
2

2. We reach the endpoint v 3 of 21, without finding any segment which

intersects A I and crosses the region to the left of 2 1 We now check:

2.1 v 3 is also the endpoint of a segment 2 2 (notice that 22 can

only be in the region to the right of A21). In this case we

make a right-turn, i.e. v 3 becomes the current vertex and A2

becomes the current segment;

2.2 v 3 is just the remaining endpoint of A V In this case we make a
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U-turn, i.e. v* becomes the current vertex and 1 2, with

reversed direction, becomes the current segment.

The implementation of the advancing step is quite simple with the use

of the adjacency maps. In fact, suppose that vi = (x1 ,y y) and that

A1 belongs to the line y -y I in the interval [xi, x3] We locate in

the HAM the point (x1 vyl + e) (where e > 0 is arbitrarily small ()) and

we obtain the abscissa x2 of the closest vertical segment to the right

of (x1,y y+ e). If x 2 -S x3, then we have a left-turn; if x 2 > X3

then we check whether (x 3, yl ) is also the endpoint of a vertical

segment, and resolve between cases 2.1 and 2.2. (There is more than

one way to perform the latter check: for example, by locating (x 1 - C

l- e) in the HAM). The other three possible cases for the current

segment (to the left, above, and below the current vertex) are handled

in exactly analogous ways. Thus the addition of one arc to a nontrivial

circuit costs one (or two) interrogation(s) of either adjacency map;

i.e., a computational work bounded by 0(logn). (
3 )

It should be evident that all nontrivial circuits are generated by

initializing the above method to a segment endpoint and a direction on the

segment (i.e., either "away" from the endpoint or "toward" it). Therefore,

each of the endpoints of members of H U V (left, right, bottom, and top)

()Note that e need not be explicitly defined; it simply gives a rule on
how to break ties in comparisons.

(3) Strictly speaking, a single advancing step may produce an arc which
is the union of several consecutive arcs (according to our definition);
this happens when several parallel segments terminate on a single

orthogonal segment and all lie on one side of it.
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gives rise to two "circuit seeds" (of nontrivial circuits), which are

naturally called centrifugal (away from the endpoint) and centripetal

(toward the endpoint). For example, given segment A - corresponding to

the interval tx1,x2 ] (x 1 < X 2) on the line y - y1 - consider endpoint

(x vyl ) of 2: the corresponding centrifugal seed is given by point

(x 1 -yi+ e) and direction of increasing x, while the centripetal seed is

given by point (x +C,y -e) and direction of decreasing x.

Initially, all endpoints are placed in a pool and are untagged. They

are extracted one by one from the pool, to generate all the nontrivial

circuits. In the course of this construction an endpoint v of a segment A

is tagged with the label OUT if we traverse I from v, while it is tagged

with the label IN when we reach v along A. Whenever an endpoint is tagged

with both labels OUT and IN, it is excised from the pool of endpoints.

Obviously, whenever the currently considered endpoint is tagged OUT only

the centripetal seed is to be used; similarly, when it is tagged IN only

the centrifugal seed is to be used. The process is concluded when the

pool becomes empty.

In summary, since there are O(n) arcs in the collection of non-

trivial circuits and the construction of one such arc can be done in

time O(logn), the set of nontrivial circuits can be constructed in

time O(nlogn), including the preprocessing required to construct the

search trees of the adjacency maps (see Section 2).

The construction of the nontrivial contour, however, is not yet

complete. Indeed, we must still link together different circuits

forming the boundary of the same region. Nontrivial region boundaries

consisting of more than one circuit are of two types (see figure 7):



14

either a collection of clockwise nontrivial circuits (the unique external

region) (figure 7a), or a collection of clockwise nontrivial circuits enclosed

by a single counterclockwise circuits, either nontrivial or trivial (a

rectangle) (figure 7b,c); obviously the enclosing trivial circuit is

not generated by the process described above.

(a/ (b) g(C)

Figure 7. Types of boundaries of nontrivial regions

The above task can be carried out as follows. Each arc of a nontrivial

circuit is a portion of an original segment; it is now useful to construct

a map which for each point on a segment gives the arc, or arcs, which

contain that point. Specifically, extending the set of arcs of nontrivial

circuits with the empty arc A, for each point on a segment the points-of-

segments - arcs map provides two arcs - one or both possibly empty -

with opposite directions and containing that point. This map is easily

constructed by scanning the set of arcs of the nontrivial circuits and

by distributing over the set of segments the vertices which are origins

and termini of arcs; next, for each segment, the vertices lying on it

are organized as a search tree. The construction of this map can be

accomplished in time o(nlogn) in a straightforward manner.
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Next we label the clockwise nontrivial circuits, by assigning the

same distinguishing label to all arcs of a given circuit; moreover in

each circuit a vertex, say,with lowest ordinate, is selected as the

"representative" of the circuit.

At this point, region boundaries can be assembled together by a

UNION-FIND approach. The set of nontrivial clockwise circuits is

scanned in order of increasing ordinate of their representative vertices.

For each such vertex v we seek in the vertical adjacency map its closest

horizontal segment below it (this corresponds to drawing a vertical line

passing through v and seeking a closest intercept p). If no such segment

exists, then the circuit being considered belongs to the unbounded region.

Otherwise, using the previously constructed map, we locate point p in

the found segment. Now, two cases are possible: p belongs to an arc e

of a nontrivial circuit C or otherwise. In the first case , "FIND"

consists in obtaining the label of (the circuit containing) e, and "UNION"

consists in identifying the labels of the two circuits under consideration

(notice that this is correct, irrespective of whether e belongs to a

clockwise or a counterclockwise nontrivial circuit); in the second case, e

is an arc of a trivial enclosing rectangle (figure 7c), which can there-

fore be constructed in a straightforward manner, and also added~ to the

points-of-segments - arcs map. Referring to the properties of the

adjacency maps, of the standard UNION-FIND techniques [9], and to the fact

that there are O(n) nontrivial circuits, it is easily realized that the just

described taks can be completed in time O(nlogn).
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3.2 EXTERNAL CONTOUR. As we noted, the method to obtain the non-

trivial contour presented above implicitly produces the contour of the

external region, i.e., the external contour. However, some efficiency

can be gained by simplifying the process of linking nontrivial circuits.

Specifically, the "UNION" task is omitted any time the labels to be

identified are not those of the external region. Obviously, this minute

modification does not change the order of the running time. In addition,

the presented method is entirely applicable to the determination of both

external and nontrivial contour of a collection of rectangles (a special

case). It is interesting to contrast this method with the one presented

in a related paper [101 to obtain the boundary of a union of n rectangles,

not just the nontrivial boundary. In that case, if t is the total number

of arcs in the boundary, the algorithm proposed in [101 runs in time

AO(nlogn + t log(2n 2/0).

3.3 POINT-LOCATION. Assume that the nontrivial contour of M be

available. We assign to each nontrivial region a distinguishing label

and associate with each arc of a nontrivial circuit the label of the

region lying to the left of it. This labeling is completed in time 0(n).

Assume also that the map points-of-segments - arcs be available.

Location of a target point p in M can be carried out in the following

manner. We locate p in one of the two adjacency maps, say the RAM; this

search operation returns two (possibly empty) abscissae x 1 andx2

(with x 1 < X 2), which are respectively the intercepts, closest to p and

on opposite sides of p, of a horizontal line through p with vertical

segments. We now have one of the following cases:

(i) either x 1 or x 2 (or both) belong to an arc (this can be tested in

O(logn) time with the aid of the points-of-segments - arcs map); then

in constant time we obtain the name of the nontrivial region containing p.
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(ii) neither x nor x2 belongs to an arc (in this case p lies in a

trivial rectangle); using the HAM and the VAM we obtain in O(logn)

time two pairs of segments, respectively vertical and horizontal,

which define the trivial rectangle containing p.

In all cases, point location is completed in O(logn) time on data

structures which use O(nlogn) space (the space needed to store the

adjacency maps), although - as we noted earlier - M may contain 2(n )

regions

3.4 ROUTE-IN-A-MAZE. Given two points s and t in the plane,

using the point-location technique just described, we can readily

ascertain the existence of a route between s and t by simply verifying

if both points belong to the same region of M. However, this preliminary

point location is not necessary; we shall try to construct a route from

s to t, and the constructions fails if and only if s and t do not lie in

the same region.

In view of the present application, we slightly modify the method

for the assembly of boundaries of nontrivial regions described in Section

3.1. Specifically, we keep track of the "history" of label-identifica-

tions by setting up a directed forest F, whose nodes correspond to

circuits of M and whose arcs correspond to label-identifications (the

arc is directed from the node of the current circuit to that of a

previously considered circuit): thus, in F there is a tree for each

nontrivial region. With this information at our disposal, we locate

in the vertical adjacency map the circuits C(s) and C(t) which are

respectively adjacent to s and t from below. Next in F we determine

the roots of the trees to which the nodes corresponding to C(s) and

C(t) belong: if these roots are distinct, then there is no route

I
-- : . - .,,.-. .. . .. . . ... ... ... .. .. . ... ... -: .. .. ... .. 'c,: ,V.-
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between s and t, otherwise we obtain the two paths from the two nodes

to the common root. These two paths contain all the information

necessary for constructing the route: indeed, starting from s, we

use a vertical edge to reach C(s) and proceed on C(s) to its "representa-

tive" vertex (lowermost), use another vertical edge to reach another

circuit (specified by one of the paths in F), and so on in a straight-

forward manner. This construction is done in time O(nlogn).

An interesting related problem - not be be discussed in this

paper - is the construction of a shortest route between two points

under the L -metric.

4. Performance Analysis

We observe that EXTERNAL-CONTOUR is transformable in time O(n)

to NONTRIVIAL-CONTOUR: in fact no additional operation is needed on the

input, but the output of the latter must be inspected, in O(n) time,

to extract the external contour from the nontrivial contour.

We now show that sorting of n numbers xl,...,x n can be transformed

in O(n) time into EXTERNAL-CONTOUR. This transformation is quite simple

and is illustrated in figure 8. Indeed,let m' = min xi and
l% iSn

m" = max xi . For each xi we construct two segments H. and V.,
lf. i9ni1. 3

where Hi lies on the line y m" -x i and spans the interval .[m', xi]

while Vi lies on x - xi and spans the interval [0, m" - xi] . Obviously,

Hi and Vi share the endpoint (xi, _xi) (also if x - m' and

x. = m" segments, H. and V. are empty). It is clear that from the
J2 ii J2

external contour of the set of segments fHI'...,H n) U (V,...,V d we

obtain the sorted sequence of the xi in O(n) time (4) In the compari-

son tree model, sorting requires 26(nlogn) time, whence the proposed

(4 )This reduction is identical to that used in [101.

I ~
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algorithm for EXTERNAL-CONTOUR and NONTRIVIAL-CONTOUR are both optimal

under this model.

Hi
S1 '"

V. .

H,

' \

v. V. "
v j Hj2 '

m'=x. x. X. m =x.

Figure 8. To show that SORTING is transformable to
EXTERNAL CONTOUR.

J!
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Appendix

Since a segment endpoint can belong to at most two nontrivial

circuit (this occurs when this endpoint lies in the interior of some

other orthogonal segment), and there are 2n endpoints, we obtain the

following straightforward lemma:

Lemma 1. The number of nontrivial circuits of M does not exceed 4n.

But a stronger statement can be proved.

Lemma 2. The total number of arcs in the nontrivial circuits of

M is 0(n).

Proof. We say that a vertex is of type i (i =0,1,2,3) if the

clockwise angle formed by the arcs meeting at that vertex (ordered

according to the direction on the circuit) is irT/2 (see figure 9).

We also let v. denote the number of vertices of type i on a given
3.

circuit. Then, for any circuit we have the following relation:

J4 for an internal (counterclockwise) circuit

V 3 VI 2v2 _4for an external (clockwise) circuit

Type 0 Type 1 Type 2 Type 3

Figure 9. Types of vertices.
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Consequently, the total number v of vertices (i.e., of arcs) is

expressible as

VMV0 +V1 +V2 +V3 =V0 1 2-1+32 4: vo+ 2v, +3v2 + 4

By summing v over all nontrivial circuits we obtain (the sumations are

extended over all such circuits) for the total number of arcs t:

t rV + 2Lu I + 3 Z~v 2 + 4Z 1

S2n + 2n + 3-2n + 4-4n 26n. ~

'Ai
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